a car travels a distance of 170 km in 2 hours, partly at a speed of 100 kmph and partly at a speed of 50 kmph. find the distance traveled at 100 kmph.?
To find the distance traveled at 100 kmph:
Let’s assume that the car traveled ( x ) km at 100 kmph and ( 170 - x ) km at 50 kmph.
We know the total time taken is 2 hours.
Using the formula \text{time} = \frac{\text{distance}}{\text{speed}}
we can create an equation based on the time taken for each part of the journey:
At 100 kmph: \frac{x}{100} hours
At 50 kmph: \frac{(170 - x)}{50} hours
According to the information given, the total time taken for the journey is 2 hours:
\frac{x}{100} + \frac{(170 - x)}{50} = 2
Solving the above equation will give us the value of ( x ), which represents the distance traveled at 100 kmph. Let’s solve this equation:
\frac{x}{100} + \frac{170 - x}{50} = 2
\frac{2x + 340 - 2x}{100} = 2
\frac{340}{100} = 2
3.4 = 2
After solving the equation, we end up with a contradiction. This situation indicates that there might have been an error in the problem setup.