determine the period of the function y = - 2 sin(pi(t)/4 + pi/2)
Determine the period of the function ( y = -2 \sin\left(\frac{\pi t}{4} + \frac{\pi}{2}\right) )
Answer:
To find the period of the function ( y = -2 \sin\left(\frac{\pi t}{4} + \frac{\pi}{2}\right) ), we need to analyze the argument of the sine function and determine how it repeats.
-
Identify the Argument of the Sine Function:
The function is of the form ( y = A \sin(Bt + C) ), where ( A ), ( B ), and ( C ) are constants.In this case, ( y = -2 \sin\left(\frac{\pi t}{4} + \frac{\pi}{2}\right) ), we have:
- ( A = -2 )
- B = \frac{\pi}{4}
- C = \frac{\pi}{2}
-
Determine the Period of the Sine Function:
The standard form of the sine function is ( y = \sin(\omega t + \phi) ), where ( \omega ) is the angular frequency. The period ( T ) of the sine function ( \sin(\omega t) ) is given by:T = \frac{2\pi}{\omega}By comparing y = \sin(\omega t + \phi) with y = \sin\left(\frac{\pi t}{4} + \frac{\pi}{2}\right) , we can see that \omega = \frac{\pi}{4}.
-
Calculate the Period ( T ):
Substitute \omega = \frac{\pi}{4} into the period formula:T = \frac{2\pi}{\frac{\pi}{4}} = \frac{2\pi \times 4}{\pi} = 8
Thus, the period of the function $ y = -2 \sin\left(\frac{\pi t}{4} + \frac{\pi}{2}\right) $s ( 8 ).
Final Answer:
The period of the function y = -2 \sin\left(\frac{\pi t}{4} + \frac{\pi}{2}\right) is \boxed{8}.