Differentiation Formulas List?
Differentiation Definition: Let’s say y is a function of x and is expressed as y=f(x). Then, the rate of change of “y” per unit change in “x” is given by \frac{dy}{dx},
\frac{dy}{dx}={f}'(x)
Differentiation Formulas for Trigonometric Functions
1. \begin{array}{l}\frac{d}{dx} (sin~ x)= cos\ x\end{array}
2. \begin{array}{l}\frac{d}{dx} (cos~ x)= – sin\ x\end{array}
3. \begin{array}{l}\frac{d}{dx} (tan ~x)= sec^{2} x\end{array}
4. \begin{array}{l}\frac{d}{dx} (cot~ x = -cosec^{2} x\end{array}
5. \begin{array}{l}\frac{d}{dx} (sec~ x) = sec\ x\ tan\ x\end{array}
6. \begin{array}{l}\frac{d}{dx} (cosec ~x)= -cosec\ x\ cot\ x\end{array}
7. \begin{array}{l}\frac{d}{dx} (sinh~ x)= cosh\ x\end{array}
8. \begin{array}{l}\frac{d}{dx} (cosh~ x) = sinh\ x\end{array}
9. \begin{array}{l}\frac{d}{dx} (tanh ~x)= sech^{2} x\end{array}
10. \begin{array}{l}\frac{d}{dx} (coth~ x)=-cosech^{2} x\end{array}
11. \begin{array}{l}\frac{d}{dx} (sech~ x)= -sech\ x\ tanh\ x\end{array}
12. \begin{array}{l}\frac{d}{dx} (cosech~ x ) = -cosech\ x\ coth\ x\end{array}
Formulas for Inverse Trigonometric Functions
-
\begin{array}{l}\frac{d}{dx}(sin^{-1}~ x)=\frac{1}{\sqrt{1 – x^2}}\end{array}
-
\begin{array}{l}\frac{d}{dx}(cos^{-1}~ x) = -\frac{1}{\sqrt{1 – x^2}}\end{array}
-
\begin{array}{l}\frac{d}{dx}(tan^{-1}~ x) = \frac{1}{1 + x^2}\end{array}
-
\begin{array}{l}\frac{d}{dx}(cot^{-1}~ x) = -\frac{1}{1 + x^2}\end{array}
-
\begin{array}{l}\frac{d}{dx}(sec^{-1} ~x) = \frac{1}{|x|\sqrt{x^2 – 1}}\end{array}
-
\begin{array}{l}\frac{d}{dx}(cosec^{-1}~x) = -\frac{1}{|x|\sqrt{x^2 – 1}}\end{array}
Logarithmic function Differentiation Formulas
-
\begin{array}{l}\frac{d}{dx}(a^{x}) = a^{x} ln a\end{array}
-
\begin{array}{l}\frac{d}{dx}(e^{x}) = e^{x}\end{array}
-
\begin{array}{l}\frac{d}{dx}(log_a~ x) = \frac{1}{(ln~ a)x}\end{array}
-
\begin{array}{l}\frac{d}{dx}(ln~ x) = 1/x\end{array}
Chain Rule:
\begin{array}{l}\frac{dy}{dx}= \frac{dy}{du}\times \frac{du}{dx}= \frac{dy}{dv}\times \frac{dv}{du}\times \frac{du}{dx}\end{array}